Bisnis Internet Gratis Tanpa Resiko

Bisnis yuk bisnis

Mau Uang Tunai Rp.277 Juta Lebih ?

Gratis Tanpa resiko,cukup Mendaftar menjadi member dan mencari Downline tanpa mengeluarkan uang sepeser-pun coba Dan Buktikan,pasti aman tanpa Resiko,

Untuk daftar Silahkan Klik link dibawah ini,dan segera daftarkan diri anda sebagai member ;

 Klik Disini

Bila Anda Kurang Jelas silahkan Klik Link Dibawah ini Dan ketik pertanyaan anda dalam kotak Chat Box pada Blog Tersebut
Kirim Pertanya'an
Saya Jamin Tanpa Resiko

Bisnis Gratis..! Yang Pasti Tanpa resiko.

Friday, March 13, 2009

Internet

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Semi-protected
For other uses, see Internet (disambiguation).
Visualization of the various routes through a portion of the Internet
Internet portal

The Internet is a global network of interconnected computers, enabling users to share information along multiple channels. Typically, a computer that connects to the Internet can access information from a vast array of available servers and other computers by moving information from them to the computer's local memory. The same connection allows that computer to send information to servers on the network; that information is in turn accessed and potentially modified by a variety of other interconnected computers. A majority of widely accessible information on the Internet consists of inter-linked hypertext documents and other resources of the World Wide Web (WWW). Computer users typically manage sent and received information with web browsers; other software for users' interface with computer networks includes specialized programs for electronic mail, online chat, file transfer and file sharing.

The movement of information in the Internet is achieved via a system of interconnected computer networks that share data by packet switching using the standardized Internet Protocol Suite (TCP/IP). It is a "network of networks" that consists of millions of private and public, academic, business, and government networks of local to global scope that are linked by copper wires, fiber-optic cables, wireless connections, and other technologies.
Contents
[hide]

* 1 Terminology
* 2 History
o 2.1 Creation
o 2.2 Growth
o 2.3 University students' appreciation and contributions
* 3 Today's Internet
o 3.1 Internet protocols
o 3.2 Internet structure
o 3.3 ICANN
o 3.4 Language
o 3.5 Internet and the workplace
o 3.6 The Internet viewed on mobile devices
* 4 Common uses
o 4.1 E-mail
o 4.2 The World Wide Web
o 4.3 Remote access
o 4.4 Collaboration
o 4.5 File sharing
o 4.6 Streaming media
o 4.7 Internet Telephony (VoIP)
* 5 Internet by region
* 6 Internet access
* 7 Social impact
o 7.1 Political organization and censorship
o 7.2 Leisure activities
* 8 Complex architecture
* 9 Market
* 10 See also
o 10.1 Major aspects and issues
o 10.2 Functions
o 10.3 Underlying infrastructure
o 10.4 Regulatory bodies
* 11 Notes
* 12 References
* 13 External links


Terminology
Look up Internet, internet in Wiktionary, the free dictionary.
See also: Internet capitalization conventions

The terms Internet and World Wide Web are often used in every-day speech without much distinction. However, the Internet and the World Wide Web are not one and the same. The Internet is a global data communications system. It is a hardware and software infrastructure that provides connectivity between computers. In contrast, the Web is one of the services communicated via the Internet. It is a collection of interconnected documents and other resources, linked by hyperlinks and URLs.[1]

The term internet is written both with capital and without capital, and is used both with and without the definite article.

History
Main article: History of the Internet

Creation

The USSR's launch of Sputnik spurred the United States to create the Advanced Research Projects Agency, known as ARPA, in February 1958 to regain a technological lead.[2][3] ARPA created the Information Processing Technology Office (IPTO) to further the research of the Semi Automatic Ground Environment (SAGE) program, which had networked country-wide radar systems together for the first time. J. C. R. Licklider was selected to head the IPTO, and networking as a potential unifying human revolution.

Licklider moved from the Psycho-Acoustic Laboratory at Harvard University to MIT in 1950, after becoming interested in information technology. At MIT, he served on a committee that established Lincoln Laboratory and worked on the SAGE project. In 1957 he became a Vice President at BBN, where he bought the first production PDP-1 computer and conducted the first public demonstration of time-sharing.

At the IPTO, Licklider got Lawrence Roberts to start a project to make a network, and Roberts based the technology on the work of Paul Baran,[4] who had written an exhaustive study for the U.S. Air Force that recommended packet switching (as opposed to circuit switching) to make a network highly robust and survivable. After much work, the first two nodes of what would become the ARPANET were interconnected between UCLA and SRI (later SRI International) in Menlo Park, California, on October 29, 1969. The ARPANET was one of the "eve" networks of today's Internet.

Following on from the demonstration that packet switching worked on the ARPANET, the British Post Office, Telenet, DATAPAC and TRANSPAC collaborated to create the first international packet-switched network service. In the UK, this was referred to as the International Packet Switched Service (IPSS), in 1978. The collection of X.25-based networks grew from Europe and the US to cover Canada, Hong Kong and Australia by 1981. The X.25 packet switching standard was developed in the CCITT (now called ITU-T) around 1976.

X.25 was independent of the TCP/IP protocols that arose from the experimental work of DARPA on the ARPANET, Packet Radio Net and Packet Satellite Net during the same time period. Vinton Cerf and Robert Kahn developed the first description of the TCP protocols during 1973 and published a paper on the subject in May 1974. Use of the term "Internet" to describe a single global TCP/IP network originated in December 1974 with the publication of RFC 675, the first full specification of TCP that was written by Vinton Cerf, Yogen Dalal and Carl Sunshine, then at Stanford University. During the next nine years, work proceeded to refine the protocols and to implement them on a wide range of operating systems.

The first TCP/IP-based wide-area network was operational by January 1, 1983 when all hosts on the ARPANET were switched over from the older NCP protocols. In 1985, the United States' National Science Foundation (NSF) commissioned the construction of the NSFNET, a university 56 kilobit/second network backbone using computers called "fuzzballs" by their inventor, David L. Mills. The following year, NSF sponsored the conversion to a higher-speed 1.5 megabit/second network. A key decision to use the DARPA TCP/IP protocols was made by Dennis Jennings, then in charge of the Supercomputer program at NSF.

The opening of the network to commercial interests began in 1988. The US Federal Networking Council approved the interconnection of the NSFNET to the commercial MCI Mail system in that year and the link was made in the summer of 1989. Other commercial electronic e-mail services were soon connected, including OnTyme, Telemail and Compuserve. In that same year, three commercial Internet service providers (ISP) were created: UUNET, PSINet and CERFNET. Important, separate networks that offered gateways into, then later merged with, the Internet include Usenet and BITNET. Various other commercial and educational networks, such as Telenet, Tymnet, Compuserve and JANET were interconnected with the growing Internet. Telenet (later called Sprintnet) was a large privately funded national computer network with free dial-up access in cities throughout the U.S. that had been in operation since the 1970s. This network was eventually interconnected with the others in the 1980s as the TCP/IP protocol became increasingly popular. The ability of TCP/IP to work over virtually any pre-existing communication networks allowed for a great ease of growth, although the rapid growth of the Internet was due primarily to the availability of commercial routers from companies such as Cisco Systems, Proteon and Juniper, the availability of commercial Ethernet equipment for local-area networking, and the widespread implementation of TCP/IP on the UNIX operating system.

Growth

Although the basic applications and guidelines that make the Internet possible had existed for almost two decades, the network did not gain a public face until the 1990s. On 6 August 1991, CERN, a pan European organisation for particle research, publicized the new World Wide Web project. The Web was invented by English scientist Tim Berners-Lee in 1989.

An early popular web browser was ViolaWWW, patterned after HyperCard and built using the X Window System. It was eventually replaced in popularity by the Mosaic web browser. In 1993, the National Center for Supercomputing Applications at the University of Illinois released version 1.0 of Mosaic, and by late 1994 there was growing public interest in the previously academic, technical Internet. By 1996 usage of the word Internet had become commonplace, and consequently, so had its use as a synecdoche in reference to the World Wide Web.

Meanwhile, over the course of the decade, the Internet successfully accommodated the majority of previously existing public computer networks (although some networks, such as FidoNet, have remained separate). During the 1990s, it was estimated that the Internet grew by 100% per year, with a brief period of explosive growth in 1996 and 1997.[5] This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary open nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network. [6]

Using various statistics, AMD estimated the population of internet users to be 1.5 billion as of January 2009.[7]

University students' appreciation and contributions

New findings in the field of communications during the 1960s, 1970s and 1980s were quickly adopted by universities across North America.

Examples of early university Internet communities are Cleveland FreeNet, Blacksburg Electronic Village and NSTN in Nova Scotia.[8] Students took up the opportunity of free communications and saw this new phenomenon as a tool of liberation. Personal computers and the Internet would free them from corporations and governments (Nelson, Jennings, Stallman).

Graduate students played a huge part in the creation of ARPANET.[citation needed] In the 1960s, the network working group, which did most of the design for ARPANET's protocols, was composed mainly of graduate students.

Today's Internet
The My Opera Community server rack. From the top, user file storage (content of files.myopera.com), "bigma" (the master MySQL database server), and two IBM blade centers containing multi-purpose machines (Apache front ends, Apache back ends, slave MySQL database servers, load balancers, file servers, cache servers and sync masters)

Aside from the complex physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts (e.g., peering agreements), and by technical specifications or protocols that describe how to exchange data over the network. Indeed, the Internet is defined by its interconnections and routing policies.

By December 31, 2008, 1.574 billion people were using the Internet according to Internet World Statistics.[9]

Internet protocols
For more details on this topic, see Internet Protocol Suite.

The complex communications infrastructure of the Internet consists of its hardware components and a system of software layers that control various aspects of the architecture. While the hardware can often be used to support other software systems, it is the design and the rigorous standardization process of the software architecture that characterizes the Internet.

The responsibility for the architectural design of the Internet software systems has been delegated to the Internet Engineering Task Force (IETF).[10] The IETF conducts standard-setting work groups, open to any individual, about the various aspects of Internet architecture. Resulting discussions and final standards are published in Requests for Comments (RFCs), freely available on the IETF web site.

The principal methods of networking that enable the Internet are contained in a series of RFCs that constitute the Internet Standards. These standards describe a system known as the Internet Protocol Suite. This is a model architecture that divides methods into a layered system of protocols (RFC 1122, RFC 1123). The layers correspond to the environment or scope in which their services operate. At the top is the space (Application Layer) of the software application, e.g., a web browser application, and just below it is the Transport Layer which connects applications on different hosts via the network (e.g., client-server model). The underlying network consists of two layers: the Internet Layer which enables computers to connect to one-another via intermediate (transit) networks and thus is the layer that establishes internetworking and the Internet, and lastly, at the bottom, is a software layer that provides connectivity between hosts on the same local link (therefor called Link Layer), e.g., a local area network (LAN) or a dial-up connection. This model is also known as the TCP/IP model of networking. While other models have been developed, such as the Open Systems Interconnection (OSI) model, they are not compatible in the details of description, nor implementation.

The most prominent component of the Internet model is the Internet Protocol (IP) which provides addressing systems for computers on the Internet and facilitates the internetworking of networks. IP Version 4 (IPv4) is the initial version used on the first generation of the today's Internet and is still in dominant use. It was designed to address up to ~4.3 billion (109) Internet hosts. However, the explosive growth of the Internet has led to IPv4 address exhaustion. A new protocol version, IPv6, was developed which provides vastly larger addressing capabilities and more efficient routing of data traffic. IPv6 is currently in commercial deployment phase around the world.

IPv6 is not interoperable with IPv4. It essentially establishes a "parallel" version of the Internet not accessible with IPv4 software. This means software upgrades are necessary for every networking device that needs to communicate on the IPv6 Internet. Most modern computer operating systems are already converted to operate with both versions of the Internet Protocol. Network infrastructures, however, are still lagging in this development.

Internet structure

There have been many analyses of the Internet and its structure. For example, it has been determined that both the Internet IP routing structure and hypertext links of the World Wide Web are examples of scale-free networks.

Similar to the way the commercial Internet providers connect via Internet exchange points, research networks tend to interconnect into large subnetworks such as the following:

* GEANT
* GLORIAD
* The Internet2 Network (formally known as the Abilene Network)
* JANET (the UK's national research and education network)

These in turn are built around relatively smaller networks. See also the list of academic computer network organizations.

Computer network diagrams often represent the Internet using a cloud symbol from which network communications pass in and out.[11]

ICANN
ICANN headquarters in Marina Del Rey, California, United States
For more details on this topic, see ICANN.

The Internet Corporation for Assigned Names and Numbers (ICANN) is the authority that coordinates the assignment of unique identifiers on the Internet, including domain names, Internet Protocol (IP) addresses, and protocol port and parameter numbers. A globally unified namespace (i.e., a system of names in which there is at most one holder for each possible name) is essential for the Internet to function. ICANN is headquartered in Marina del Rey, California, but is overseen by an international board of directors drawn from across the Internet technical, business, academic, and non-commercial communities. The US government continues to have the primary role in approving changes to the root zone file that lies at the heart of the domain name system. Because the Internet is a distributed network comprising many voluntarily interconnected networks, the Internet has no governing body. ICANN's role in coordinating the assignment of unique identifiers distinguishes it as perhaps the only central coordinating body on the global Internet, but the scope of its authority extends only to the Internet's systems of domain names, IP addresses, protocol ports and parameter numbers.

On November 16, 2005, the World Summit on the Information Society, held in Tunis, established the Internet Governance Forum (IGF) to discuss Internet-related issues.

Language
For more details on this topic, see English on the Internet.
For more details on this topic, see Global Internet usage.
Further information: Unicode

The prevalent language for communication on the Internet is English. This may be a result of the Internet's origins, as well as English's role as a lingua franca. It may also be related to the poor capability of early computers, largely originating in the United States, to handle characters other than those in the English variant of the Latin alphabet.

After English (29% of Web visitors) the most requested languages on the World Wide Web are Chinese (19%), Spanish (9%), Japanese (6%), French (5%) and German (4%).[12]

By region, 40% of the world's Internet users are based in Asia, 26% in Europe, 17% in North America, 10% in Latin America and the Caribbean, 4% in Africa, 3% in the Middle East and 1% in Australia.[9]

The Internet's technologies have developed enough in recent years, especially in the use of Unicode, that good facilities are available for development and communication in most widely used languages. However, some glitches such as mojibake (incorrect display of foreign language characters, also known as kryakozyabry) still remain.

Internet and the workplace

The Internet is allowing greater flexibility in working hours and location, especially with the spread of unmetered high-speed connections and Web applications.

The Internet viewed on mobile devices

The Internet can now be accessed virtually anywhere by numerous means. Mobile phones, datacards, handheld game consoles and cellular routers allow users to connect to the Internet from anywhere there is a cellular network supporting that device's technology.

Within the limitations imposed by the small screen and other limited facilities of such a pocket-sized device, all the services of the Internet, including email and web browsing, may be available in this way. Service providers may restrict the range of these services and charges for data access may be significant, compared to home usage.

Common uses

E-mail
For more details on this topic, see E-mail.

The concept of sending electronic text messages between parties in a way analogous to mailing letters or memos predates the creation of the Internet. Even today it can be important to distinguish between Internet and internal e-mail systems. Internet e-mail may travel and be stored unencrypted on many other networks and machines out of both the sender's and the recipient's control. During this time it is quite possible for the content to be read and even tampered with by third parties, if anyone considers it important enough. Purely internal or intranet mail systems, where the information never leaves the corporate or organization's network, are much more secure, although in any organization there will be IT and other personnel whose job may involve monitoring, and occasionally accessing, the e-mail of other employees not addressed to them. Today you can send pictures and attach files on e-mail. Most e-mail servers today also feature the ability to send e-mail to multiple e-mail addresses.

The World Wide Web
For more details on this topic, see World Wide Web.
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks

Many people use the terms Internet and World Wide Web (or just the Web) interchangeably, but, as discussed above, the two terms are not synonymous.

The World Wide Web is a huge set of interlinked documents, images and other resources, linked by hyperlinks and URLs. These hyperlinks and URLs allow the web servers and other machines that store originals, and cached copies of, these resources to deliver them as required using HTTP (Hypertext Transfer Protocol). HTTP is only one of the communication protocols used on the Internet.

Web services also use HTTP to allow software systems to communicate in order to share and exchange business logic and data.

Software products that can access the resources of the Web are correctly termed user agents. In normal use, web browsers, such as Internet Explorer, Firefox and Apple Safari, access web pages and allow users to navigate from one to another via hyperlinks. Web documents may contain almost any combination of computer data including graphics, sounds, text, video, multimedia and interactive content including games, office applications and scientific demonstrations.

Through keyword-driven Internet research using search engines like Yahoo! and Google, millions of people worldwide have easy, instant access to a vast and diverse amount of online information. Compared to encyclopedias and traditional libraries, the World Wide Web has enabled a sudden and extreme decentralization of information and data.

Using the Web, it is also easier than ever before for individuals and organisations to publish ideas and information to an extremely large audience. Anyone can find ways to publish a web page, a blog or build a website for very little initial cost. Publishing and maintaining large, professional websites full of attractive, diverse and up-to-date information is still a difficult and expensive proposition, however.

Many individuals and some companies and groups use "web logs" or blogs, which are largely used as easily updatable online diaries. Some commercial organisations encourage staff to fill them with advice on their areas of specialization in the hope that visitors will be impressed by the expert knowledge and free information, and be attracted to the corporation as a result. One example of this practice is Microsoft, whose product developers publish their personal blogs in order to pique the public's interest in their work.

Collections of personal web pages published by large service providers remain popular, and have become increasingly sophisticated. Whereas operations such as Angelfire and GeoCities have existed since the early days of the Web, newer offerings from, for example, Facebook and MySpace currently have large followings. These operations often brand themselves as social network services rather than simply as web page hosts.

Advertising on popular web pages can be lucrative, and e-commerce or the sale of products and services directly via the Web continues to grow.

In the early days, web pages were usually created as sets of complete and isolated HTML text files stored on a web server. More recently, websites are more often created using content management or wiki software with, initially, very little content. Contributors to these systems, who may be paid staff, members of a club or other organisation or members of the public, fill underlying databases with content using editing pages designed for that purpose, while casual visitors view and read this content in its final HTML form. There may or may not be editorial, approval and security systems built into the process of taking newly entered content and making it available to the target visitors.

Remote access
Further information: Remote access

The Internet allows computer users to connect to other computers and information stores easily, wherever they may be across the world. They may do this with or without the use of security, authentication and encryption technologies, depending on the requirements.

This is encouraging new ways of working from home, collaboration and information sharing in many industries. An accountant sitting at home can audit the books of a company based in another country, on a server situated in a third country that is remotely maintained by IT specialists in a fourth. These accounts could have been created by home-working bookkeepers, in other remote locations, based on information e-mailed to them from offices all over the world. Some of these things were possible before the widespread use of the Internet, but the cost of private leased lines would have made many of them infeasible in practice.

An office worker away from his desk, perhaps on the other side of the world on a business trip or a holiday, can open a remote desktop session into his normal office PC using a secure Virtual Private Network (VPN) connection via the Internet. This gives the worker complete access to all of his or her normal files and data, including e-mail and other applications, while away from the office.

This concept is also referred to by some network security people as the Virtual Private Nightmare, because it extends the secure perimeter of a corporate network into its employees' homes.

Collaboration
See also: Collaborative software

The low cost and nearly instantaneous sharing of ideas, knowledge, and skills has made collaborative work dramatically easier. Not only can a group cheaply communicate and share ideas, but the wide reach of the Internet allows such groups to easily form in the first place. An example of this is the free software movement, which has produced Linux, Mozilla Firefox, OpenOffice.org etc.

Internet "chat", whether in the form of IRC chat rooms or channels, or via instant messaging systems, allow colleagues to stay in touch in a very convenient way when working at their computers during the day. Messages can be exchanged even more quickly and conveniently than via e-mail. Extensions to these systems may allow files to be exchanged, "whiteboard" drawings to be shared or voice and video contact between team members.

Version control systems allow collaborating teams to work on shared sets of documents without either accidentally overwriting each other's work or having members wait until they get "sent" documents to be able to make their contributions.

Business and project teams can share calendars as well as documents and other information. Such collaboration occurs in a wide variety of areas including scientific research, software development, conference planning, political activism and creative writing.

File sharing
For more details on this topic, see File sharing.

A computer file can be e-mailed to customers, colleagues and friends as an attachment. It can be uploaded to a website or FTP server for easy download by others. It can be put into a "shared location" or onto a file server for instant use by colleagues. The load of bulk downloads to many users can be eased by the use of "mirror" servers or peer-to-peer networks.

In any of these cases, access to the file may be controlled by user authentication, the transit of the file over the Internet may be obscured by encryption, and money may change hands for access to the file. The price can be paid by the remote charging of funds from, for example, a credit card whose details are also passed—hopefully fully encrypted—across the Internet. The origin and authenticity of the file received may be checked by digital signatures or by MD5 or other message digests.

These simple features of the Internet, over a worldwide basis, are changing the production, sale, and distribution of anything that can be reduced to a computer file for transmission. This includes all manner of print publications, software products, news, music, film, video, photography, graphics and the other arts. This in turn has caused seismic shifts in each of the existing industries that previously controlled the production and distribution of these products.

Streaming media

Many existing radio and television broadcasters provide Internet "feeds" of their live audio and video streams (for example, the BBC). They may also allow time-shift viewing or listening such as Preview, Classic Clips and Listen Again features. These providers have been joined by a range of pure Internet "broadcasters" who never had on-air licenses. This means that an Internet-connected device, such as a computer or something more specific, can be used to access on-line media in much the same way as was previously possible only with a television or radio receiver. The range of material is much wider, from pornography to highly specialized, technical webcasts. Podcasting is a variation on this theme, where—usually audio—material is downloaded and played back on a computer or shifted to a portable media player to be listened to on the move. These techniques using simple equipment allow anybody, with little censorship or licensing control, to broadcast audio-visual material on a worldwide basis.

Webcams can be seen as an even lower-budget extension of this phenomenon. While some webcams can give full-frame-rate video, the picture is usually either small or updates slowly. Internet users can watch animals around an African waterhole, ships in the Panama Canal, traffic at a local roundabout or monitor their own premises, live and in real time. Video chat rooms and video conferencing are also popular with many uses being found for personal webcams, with and without two-way sound.

YouTube was founded on 15 February 2005 and is now the leading website for free streaming video with a vast number of users. It uses a flash-based web player to stream and show the video files. Users are able to watch videos without signing up; however, if they do sign up, they are able to upload an unlimited amount of videos and build their own personal profile. YouTube claims that its users watch hundreds of millions, and upload hundreds of thousands, of videos daily.[13]

Internet Telephony (VoIP)
For more details on this topic, see VoIP.

VoIP stands for Voice-over-Internet Protocol, referring to the protocol that underlies all Internet communication. The idea began in the early 1990s with walkie-talkie-like voice applications for personal computers. In recent years many VoIP systems have become as easy to use and as convenient as a normal telephone. The benefit is that, as the Internet carries the voice traffic, VoIP can be free or cost much less than a traditional telephone call, especially over long distances and especially for those with always-on Internet connections such as cable or ADSL.

VoIP is maturing into a competitive alternative to traditional telephone service. Interoperability between different providers has improved and the ability to call or receive a call from a traditional telephone is available. Simple, inexpensive VoIP network adapters are available that eliminate the need for a personal computer.

Voice quality can still vary from call to call but is often equal to and can even exceed that of traditional calls.

Remaining problems for VoIP include emergency telephone number dialling and reliability. Currently, a few VoIP providers provide an emergency service, but it is not universally available. Traditional phones are line-powered and operate during a power failure; VoIP does not do so without a backup power source for the phone equipment and the Internet access devices.

VoIP has also become increasingly popular for gaming applications, as a form of communication between players. Popular VoIP clients for gaming include Ventrilo and Teamspeak, and others. PlayStation 3 and Xbox 360 also offer VoIP chat features.

Internet by region
Main article: Internet access worldwide
Main article: List of countries by number of Internet users

Internet access
For more details on this topic, see Internet access.
Sister project Wikibooks has a book on the topic of
Online linux connect

Common methods of home access include dial-up, landline broadband (over coaxial cable, fiber optic or copper wires), Wi-Fi, satellite and 3G technology cell phones.

Public places to use the Internet include libraries and Internet cafes, where computers with Internet connections are available. There are also Internet access points in many public places such as airport halls and coffee shops, in some cases just for brief use while standing. Various terms are used, such as "public Internet kiosk", "public access terminal", and "Web payphone". Many hotels now also have public terminals, though these are usually fee-based. These terminals are widely accessed for various usage like ticket booking, bank deposit, online payment etc. Wi-Fi provides wireless access to computer networks, and therefore can do so to the Internet itself. Hotspots providing such access include Wi-Fi cafes, where would-be users need to bring their own wireless-enabled devices such as a laptop or PDA. These services may be free to all, free to customers only, or fee-based. A hotspot need not be limited to a confined location. A whole campus or park, or even an entire city can be enabled. Grassroots efforts have led to wireless community networks. Commercial Wi-Fi services covering large city areas are in place in London, Vienna, Toronto, San Francisco, Philadelphia, Chicago and Pittsburgh. The Internet can then be accessed from such places as a park bench.[14]

Apart from Wi-Fi, there have been experiments with proprietary mobile wireless networks like Ricochet, various high-speed data services over cellular phone networks, and fixed wireless services.

High-end mobile phones such as smartphones generally come with Internet access through the phone network. Web browsers such as Opera are available on these advanced handsets, which can also run a wide variety of other Internet software. More mobile phones have Internet access than PCs, though this is not as widely used. An Internet access provider and protocol matrix differentiates the methods used to get online.

Social impact
This article does not cite any references or sources. Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. (November 2008)

See also: Sociology of the Internet

Chris Young was voted into the 2007 Major League Baseball All-Star Game on the internet via the All-Star Final Vote.

The Internet has made possible entirely new forms of social interaction, activities and organizing, thanks to its basic features such as widespread usability and access.

Social networking websites such as Facebook and MySpace have created a new form of socialization and interaction. Users of these sites are able to add a wide variety of items to their personal pages, to indicate common interests, and to connect with others. It is also possible to find a large circle of existing acquaintances, especially if a site allows users to utilize their real names, and to allow communication among large existing groups of people.

Sites like meetup.com exist to allow wider announcement of groups which may exist mainly for face-to-face meetings, but which may have a variety of minor interactions over their group's site at meetup.org, or other similar sites.

Political organization and censorship
For more details on this topic, see Internet censorship.

In democratic societies, the Internet has achieved new relevance as a political tool. The presidential campaign of Howard Dean in 2004 in the United States became famous for its ability to generate donations via the Internet. Many political groups use the Internet to achieve a whole new method of organizing, in order to carry out Internet activism.

Some governments, such as those of Iran, North Korea, Myanmar, the People's Republic of China, and Saudi Arabia, restrict what people in their countries can access on the Internet, especially political and religious content. This is accomplished through software that filters domains and content so that they may not be easily accessed or obtained without elaborate circumvention.

In Norway, Denmark, Finland[15] and Sweden, major Internet service providers have voluntarily (possibly to avoid such an arrangement being turned into law) agreed to restrict access to sites listed by police. While this list of forbidden URLs is only supposed to contain addresses of known child pornography sites, the content of the list is secret.

Many countries, including the United States, have enacted laws making the possession or distribution of certain material, such as child pornography, illegal, but do not use filtering software.

There are many free and commercially available software programs with which a user can choose to block offensive websites on individual computers or networks, such as to limit a child's access to pornography or violence. See Content-control software.

Leisure activities

The Internet has been a major source of leisure since before the World Wide Web, with entertaining social experiments such as MUDs and MOOs being conducted on university servers, and humor-related Usenet groups receiving much of the main traffic. Today, many Internet forums have sections devoted to games and funny videos; short cartoons in the form of Flash movies are also popular. Over 6 million people use blogs or message boards as a means of communication and for the sharing of ideas.

The pornography and gambling industries have both taken full advantage of the World Wide Web, and often provide a significant source of advertising revenue for other websites. Although many governments have attempted to put restrictions on both industries' use of the Internet, this has generally failed to stop their widespread popularity.

One main area of leisure on the Internet is multiplayer gaming. This form of leisure creates communities, bringing people of all ages and origins to enjoy the fast-paced world of multiplayer games. These range from MMORPG to first-person shooters, from role-playing games to online gambling. This has revolutionized the way many people interact and spend their free time on the Internet.

While online gaming has been around since the 1970s, modern modes of online gaming began with services such as GameSpy and MPlayer, to which players of games would typically subscribe. Non-subscribers were limited to certain types of gameplay or certain games.

Many use the Internet to access and download music, movies and other works for their enjoyment and relaxation. As discussed above, there are paid and unpaid sources for all of these, using centralized servers and distributed peer-to-peer technologies. Some of these sources take more care over the original artists' rights and over copyright laws than others.

Many use the World Wide Web to access news, weather and sports reports, to plan and book holidays and to find out more about their random ideas and casual interests.

People use chat, messaging and e-mail to make and stay in touch with friends worldwide, sometimes in the same way as some previously had pen pals. Social networking websites like MySpace, Facebook and many others like them also put and keep people in contact for their enjoyment.

The Internet has seen a growing number of Web desktops, where users can access their files, folders, and settings via the Internet.

Cyberslacking has become a serious drain on corporate resources; the average UK employee spends 57 minutes a day surfing the Web at work, according to a study by Peninsula Business Services.[16]

Complex architecture

Many computer scientists see the Internet as a "prime example of a large-scale, highly engineered, yet highly complex system".[17] The Internet is extremely heterogeneous. (For instance, data transfer rates and physical characteristics of connections vary widely.) The Internet exhibits "emergent phenomena" that depend on its large-scale organization. For example, data transfer rates exhibit temporal self-similarity. Further adding to the complexity of the Internet is the ability of more than one computer to use the Internet through only one node, thus creating the possibility for a very deep and hierarchal sub-network that can theoretically be extended infinitely (disregarding the programmatic limitations of the IPv4 protocol). Principles of this architecture date back to the 1960s and it might not be a solution best suited to modern needs. Thus, the possibility of developing alternative structures is currently being looked into.[18]

According to a June 2007 article in Discover magazine, the combined weight of all the electrons moved within the Internet in a day is 0.2 millionths of an ounce.[19] Others have estimated this at nearer 2 ounces (50 grams).[20]

Market

The Internet has also become a large market for companies; some of the biggest companies today have grown by taking advantage of the efficient nature of low-cost advertising and commerce through the Internet, also known as e-commerce. It is the fastest way to spread information to a vast number of people simultaneously. The Internet has also subsequently revolutionized shopping—for example; a person can order a CD online and receive it in the mail within a couple of days, or download it directly in some cases. The Internet has also greatly facilitated personalized marketing which allows a company to market a product to a specific person or a specific group of people more so than any other advertising medium.

Examples of personalized marketing include online communities such as MySpace, Friendster, Orkut, Facebook and others which thousands of Internet users join to advertise themselves and make friends online. Many of these users are young teens and adolescents ranging from 13 to 25 years old. In turn, when they advertise themselves they advertise interests and hobbies, which online marketing companies can use as information as to what those users will purchase online, and advertise their own companies' products to those users.
Further information: Disintermediation#Impact of Internet-related disintermediation upon various industries and Travel agency#The Internet threat

No comments:

Post a Comment